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Abstract

Quantitative structure–enantioselectivity relationships (QSERs) have been developed to describe the resolution of a series
of chiral arylpropionic acids using capillary electrophoresis. Native b-cyclodextrin and two derivatized forms are used as the
chiral resolving agents. The QSER models are developed using the results of molecular mechanics calculations as input to
multivariate linear regression and also to neural networks. Single models are developed to predict the optimum cyclodextrin
to resolve a given analyte, the migration order, and the magnitude of the separation. Models are also developed to predict
only the optimum cyclodextrin.  2001 Dupont Pharmaceutical Company. Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction types of chiral separations are an attractive applica-
tion of CE, as the high efficiency of CE helps to

Enantiomers cannot be separated on the basis of generate adequate resolution [4].
differences in the usual physical properties, such as Chiral separations using CE typically involve
freezing or boiling point, or solubility. Instead many adding a chiral selector molecule to the background
separation techniques rely upon the formation of electrolyte [3]. The selector molecule preferentially
differing transient or non-covalent diastereoisomeric complexes with one of the enantiomers, giving the
complexes of the enantiomer with another chiral two enantiomers differing effective electrophoretic
entity, for example in liquid chromatography with a mobilities. At present, choosing the optimum selector
chiral stationary phase [1], or capillary electropho- molecule for a particular separation is an inexact
resis (CE) with a chiral additive to the background science. Proposed approaches for choice of selector
electrolyte [2,3]. Separation of the diastereoisomeric in CE generally involve screening of a variety of
complexes can involve low selectivity, thus these potential selectors [5], followed by various ap-

proaches to optimization [6–8]. In pharmaceutical
development, it is common to have to analyze many
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In such an environment, rapid prediction of critical formed on a series of commercially available
CE method parameters, e.g. choice of chiral selector, arylpropionic acids are reported. Resolution of the
would clearly be of value. In this work, we evaluate analytes was attempted using CE with three cyclo-
different strategies for prediction of the optimum dextrins as chiral selectors: b-cyclodextrin (b-CD),
selector in CE, using a model set of compounds. hydroxypropyl-b-cyclodextrin (HP-b-CD, avg. de-

One strategy for the development of predictive gree of substitution DS50.8), and tri-O-methyl-b-
models of the enantioselectivity is the construction of cyclodextrin (tri-OMe-b-CD). Analyte descriptors
quantitative structure–enantioselectivity relationships calculated by means of molecular modeling software
(QSERs). These relationships attempt to isolate and were applied to multivariate regression analysis, in
identify the structural characteristics of a series of addition to multi-layer neural networks, to model the
racemic analytes deemed responsible for the ob- enantioselective behavior.
served enantioselectivity. These characteristics are
used as the independent variables in multivariate
regression analysis and correlated against the ex- 2. Experimental
perimental data. Development of statistically signifi-
cant equations allows for the possibility of extracting 2.1. Chemicals and sample preparation
physically meaningful information relating to the
selection process. This approach has been successful- Analyte structures are given in Fig. 1. All the
ly applied to a number of chiral stationary phases for compounds possess a cyclic, aromatic backbone,
liquid chromatography [9–13]. with pendant groups or side chains capable of

The important structural characteristics, or de- hydrogen bonding. Analytes 4, 12, 13, 15, 18, and 22
scriptors, may also be used as inputs to neural were obtained from Sigma (St. Louis, MO, USA); all
networks. Neural networks consist of multiple layers others from Aldrich (Milwaukee, WI, USA). The
of interconnected neurons, with the most typical three types of cyclodextrin used in this study were
networks having three layers. The first layer has one obtained from Sigma, as were disodium hydro-
neuron for each input variable, and the second or genphosphate and citric acid. HPLC-grade hexanes
hidden layer contains a number of neurons (the and isopropanol were obtained from EM Scientific
specific number depends on the network design). The (Gibbstown, NJ, USA) and trifluoroacetic acid was
final, output layer has one neuron for each parameter purchased from Sigma.
(e.g., retention, selectivity) to be predicted or corre- The CE background electrolyte (BGE) comprised
lated for a given analyte. The input to each neuron in a pH 5 buffer prepared by mixing a 20 mM aqueous
a given layer is the output from every neuron in the solution of Na HPO and a 10 mM aqueous solution2 4

previous layer. For example, each neuron in the of citric acid. An appropriate amount of each cyclo-
hidden layer is fed by, or connected to, the output of dextrin was dissolved in the BGE to yield con-
every neuron in the first layer. The inputs are centrations of 12 mM (b-CD) and 50 mM (HP-b-CD
summed, and an activation function is applied to and tri-OMe-b-CD).
generate the output of each neuron. If the activation All of the analytes, with the exception of suprofen

22xfunction is non-linear (e.g., e , where x is the sum (analyte 4), were dissolved in distilled water (Milli-
of the inputs to the neuron), a high degree of non- pore, Milford, MA, USA) at concentrations between
linearity may be introduced into the network. Typi- 0.2 and 1.0 mg/ml. Suprofen was not sufficiently
cally, the activation function has the same mathe- soluble in water, and instead was dissolved at a
matical form in every neuron of a given layer. concentration of |0.4 mg/ml in the BGE with a
Neural networks have been successfully applied to small amount of the cyclodextrin of interest added (3
various areas of chromatography and electrophoresis mM for b-CD, 5 mM for HP-b-CD and tri-OMe-b-
[14–16], and have demonstrated considerable po- CD). A neutral marker solution was prepared by
tential for retention prediction in achiral systems dissolving 4% (v/v) acetone in the BGE with no
[17,18]. cyclodextrin added. All solutions were passed

In this article, the results of experiments per- through a 0.45 mm polyvinylidene fluoride mem-
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Fig. 1. Analytes considered in this work.

brane filter (Whatman, Clifton, NJ, USA) prior to Uncoated, fused-silica capillaries were cut from a
use. spool of stock obtained from Polymicro Tech-

nologies (Phoenix, AZ, USA). The stock had an
2.2. Capillary electrophoresis internal diameter of 50 mm and an external diameter

of 365 mm. The capillaries were cut to a length of
All separations were performed on a Hewlett- 64.5 cm, with an effective length of 56 cm from the

Packard 3D/CE capillary electrophoresis instrument. injection point to the detector. The temperature of



302 J.P. Wolbach et al. / J. Chromatogr. A 914 (2001) 299 –314

the cartridge containing the capillary was thermo- was determined using an Autopol III polarimeter
stated at 358C. All separations were performed using (Randolph Research, Flanders, NJ, USA) operating
an applied potential of 20 kV, resulting in a current at 365 nm. Mobile phase compositions, flow-rates,
of approximately 12 mA. and sample preparations are listed in Table 1. All

Before each trial, the capillary was flushed for 3 mobile phases also included 0.5% (v/v) of trifluoro-
min with 0.1 M NaOH, 8 min with the BGE, and acetic acid, and the mobile phase flow-rate was
then a 20 kV potential was applied for 6 min. The varied to hold the column backpressure under 430
neutral marker and analyte solutions were injected p.s.i. (1 p.s.i.56894.76 Pa). Multiple 200 ml sample
back-to-back, each for 3 s using 30 mbar of pressure. injections were performed to allow manual collection
The separations were monitored on-column at 200 of |5 mg of the first eluting enantiomer. All
and 254 nm. The migration times of the analytes separations were performed at ambient temperature
were taken from the 200 nm measurement, and the (|258C).
migration time of the neutral marker from the 254
nm measurement. Data were collected and analyzed 2.4. Determination of pKa

using the Hewlett-Packard ChemStation software
(Rev. A.06.03) running on an IBM-compatible per- If the pK of an analyte could not be found in thea

sonal computer. All separations were performed in literature, it was determined experimentally by
duplicate. potentiometric titration using a GLpKa Titrator

(Sirius Analytical Instruments, Forest Row, East
2.3. Chromatography Sussex, UK). If the analyte was not sufficiently

soluble in water, a mixed solvent of water and
The migration order for each resolved analyte was methanol was used. When using the co-solvent

determined by spiking the samples with one of the procedure a series of titrations were performed at
pure enantiomers. The spiking created enantiomeric three different weight percentages of methanol. Co-
ratios of |3:1 in the samples. Enantiomerically pure solvent pK values are extracted from the titrationa

forms of analytes 1–3, 5, 6, 11, and 14 were data using a least squares refinement procedure and
purchased, while for analytes 4 and 18 the migration extrapolated to 100% aqueous conditions using the
order was taken from the literature [19,20]. The other Yasuda–Shedlovsky plot.
analytes were chromatographically resolved follow-
ing a published method of Booth and Wainer [13]. 2.5. Computational chemistry

Separations were performed on a Hewlett-Packard
1090 chromatograph, using 250 mm34.6 mm I.D. Neutral and anionic structures for each analyte

2columns packed with ChiralPak AD (Chiral Tech- were created in Cerius (Molecular Simulations, San
nologies, Exton, PA, USA). Column elution order Diego, CA, USA). Complete conformational search-

Table 1
aLiquid chromatographic conditions for manual fraction collection

Compound Sample conc. Sample solvent Mobile phase Flow-rate Elution
(mg/ml) hexane–isopropanol hexane–isopropanol (ml /min) order

8 15 80:20 95:5 1.00 1 before 2

12 10 80:20 85:15 0.75 1 before 2

13 5 85:15 85:15 0.75 2 before 1

15 10 95:5 95:5 1.00 2 before 1

16 10 95:5 95:5 1.00 2 before 1

17 10 95:5 95:5 1.00 1 before 2

19 10 80:20 95:5 1.00 1 before 2

20 6 95:5 95:5 1.00 2 before 1

21 10 95:5 95:5 1.00 2 before 1

a In each case, the mobile phase also contained 0.5% (v/v) of trifluoroacetic acid.
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es were performed using the Conformers module of ties are presented in Table 2. The data in this and
2Cerius , and the molecular geometries were opti- subsequent tables are separated into the training set

mized using the consistent-valence force field [21– (1–17) and the test set (18–22) used in the multi-
28]. Molecular descriptors were calculated for the variate linear regression QSER analysis. The re-
minimum energy conformation of the neutral and ported mobilities are the average of two analyses. If
anionic form of each analyte using the QSAR1 and an analyte is resolved, the effective mobility of each

2Descriptor1 modules of Cerius . All calculations enantiomer is listed.
were performed on a Silicon Graphics O2 worksta- Selectivity may be defined as:
tion (Silicon Graphics, Sunnyvale, CA, USA).

m 1 enantiomers deff
]]]]]]j 5 (1)1 / 22.6. Statistical analysis and neural networks m 2 enantiomers deff

The selectivities as defined in Eq. (1) are presentedThe first statistical technique used was multi-
in Table 3. With this definition, the magnitude of thevariate linear regression directed by a genetic func-
separation and the migration order are contained in ation approximation (GFA) as implemented in the

2 single number. If j is greater than 1, the (2)-GFA module of Cerius [29]. In the GFA, a series of 1 / 2

enantiomer migrates first. If it is less than 1, theinitial equations are formed using random combina-
(1)-enantiomer migrates first. Representative chro-tions of the molecular descriptors. The randomly
matograms of the separations are presented in Fig. 2.generated equations are subjected to multivariate

Enantiomeric resolution may occur due to differ-linear regression, and the best-fitting equations are
ences in the binding strength of either the neutralallowed to ‘‘breed’’ or exchange terms to form new
species or the anionic species. Since both mecha-equations. As many generations are bred, the approx-
nisms are possible, the descriptor values used are theimation rapidly converges to sets of descriptors that
mole-fraction weighted averages of the descriptorbest describe the experimental data. Unlike other
values for the neutral and anionic forms of eachtechniques, the GFA generates multiple equations
analyte. The fraction of each analyte that was ionizedwith similar qualities of fit to the data. Although a
(X) at pH 5 was determined by re-arrangement of thesingle equation may then be chosen based on a single
Henderson–Hasselbalch equation:criterion, e.g. a correlation coefficient or the lack of

fit parameter, further insight is often gained by
Xexamination of the population of well-fitting equa- 2 pK 2pHs da ]]K 5 10 5eq 1 2 Xtions [29].

(2)2 pK 2pHs daTwo types of neural networks were also used: a 10 1
]]]]] ]]]]X 5 52 pK 2pH pK 2pHs d s dgeneral regression neural network (GRNN) [30] to a a1 1 10 1 1 10

build a continuous-valued model of the data, and a
probabilistic neural network (PNN) [31,32] to model The pK values and fraction ionized are presented ina

the data as a categorization problem. These networks Table 4.
have three-layers, with the hidden layer containing a There are four categories of analyte properties that
neuron for each record in the training set. The proper could potentially affect inclusion behavior. The size,
descriptors to use as inputs to the networks were shape, and hydrophobicity of the analyte are all
determined using a genetic algorithm. The neural important for interaction with the internal cavity,
network models were developed using the program while successful interaction with the groups around
NeuroShell 2, V. 4.0 (Ward Systems Group, Fre- the rim of the cyclodextrin requires the analyte to
derick, MD, USA) running on a Pentium III personal have the capacity to form hydrogen bonds. Twenty-
computer. four descriptors were calculated for each neutral and

anionic species reflecting these and other properties.
The descriptors are listed in Table 5. The descriptors

3. Results and discussion were not enantiospecific, as none would yield a
different value for the (1)- and (2)-enantiomers of

The experimentally determined effective mobili- the same analyte.
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Table 2
4 2 21 21 aEffective mobilities of the analytes (m 310 ) (cm V s )eff

Compound b-CD HP- Tri-OMe- Compound b-CD HP- Tri-OMe-
-b-CD -b-CD -b-CD -b-CD

1 21.06 20.68 20.58 13 22.57 22.03 22.51
20.64 22.06

2 20.87 20.59 20.48 14 22.12 21.60 22.27
20.56 22.21

3 21.16 20.71 20.87 15 21.93 21.42 22.14
20.94 21.96

4 21.11 20.76 20.66 16 21.89 21.23 21.91
20.71 21.95 21.26 21.93

5 21.41 20.82 22.06 17 21.74 21.09 21.50
20.91 22.14 21.12 21.55

6 21.16 20.51 21.61
20.62 21.70

7 23.07 22.40 22.98 18 20.99 20.60 20.36

8 22.49 21.92 22.70 20.44
22.53 21.96 19 22.20 21.40 22.20

9 22.27 21.57 22.55 21.53 22.26
22.56 20 22.41 21.88 22.48

10 22.81 22.25 22.66 22.48 21.92

11 22.60 22.03 22.48 21 21.86 21.27 21.60
22.11 21.90 21.29 21.65

12 22.82 22.29 22.57 22 22.93 22.46 22.75
22.31

a Experimental conditions: 358C, 20 kV applied potential, |15 mM pH 5 buffer with 12 mM b-CD, 50 mM HP-b-CD, or 50 mM
Tri-OMe-b-CD. For analytes that are resolved, mobilities for both enantiomers are listed.

Table 3
Selectivities as a function of cyclodextrin: j defined by Eq. (1)1 / 2

Compound b-CD HP- Tri-OMe- Compound b-CD HP- Tri-OMe-
-b-CD -b-CD -b-CD -b-CD

1 1.000 1.000 1.098 13 1.000 0.984 1.000
2 1.000 1.000 1.175 14 1.040 1.000 1.000
3 1.000 1.000 1.074 15 1.016 1.000 1.000
4 1.000 1.000 1.084 16 1.032 1.028 1.010

5 1.000 0.917 0.963 17 1.000 0.976 0.968
6 1.000 0.830 0.949
7 1.000 1.000 1.000
8 1.017 1.018 1.000 18 1.000 1.000 1.233

9 1.000 1.000 0.994 19 1.000 1.098 1.027
10 1.000 1.000 1.000 20 1.027 1.019 1.000
11 1.000 0.975 1.000 21 1.018 1.014 1.031
12 1.000 0.992 1.000 22 1.000 1.000 1.000



J.P. Wolbach et al. / J. Chromatogr. A 914 (2001) 299 –314 305

Fig. 2. Representative chromatograms of the separations. Chromatograms measured at 200 nm. Migration times in min. The times in
parentheses are the migration times of acetone taken from measurements at 254 nm.

Table 4
pK and fraction of each analyte ionized at pH 5a

Compound pK Fraction ionized Compound pK Fraction ionizeda a

1 4.340 0.820 13 3.271 0.982
2 4.520 0.751 14 3.061 0.989
3 4.360 0.814 15 3.150 0.986
4 3.910 0.925 16 3.150 0.986

5 4.640 0.696 17 2.927 0.992
6 4.230 0.862
7 3.410 0.975
8 3.465 0.972 18 4.660 0.686

9 3.586 0.963 19 4.120 0.884
10 2.968 0.991 20 3.200 0.984
11 2.550 0.996 21 3.110 0.987
12 3.243 0.983 22 3.590 0.963
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Table 5 data set, and its composition was not an adjustable
List of calculated descriptors parameter in this study.
Size /shape descriptors Jurs descriptors [33,34] The modeled data is discontinuous, as not every

V Total apolar surface aream analyte is separated by every cyclodextrin. To ac-
PMI Total polar surface area count for this discontinuity, spline functions in the
Rad. of gyration Fractional neg. surface area

descriptors were allowed in addition to normal linearSurface area Partial neg. surface area
terms. The derivation of the equations was directedShadow-n Relative apolar surface area

Density Relative polar surface area by the GFA. In the GFA, the knot of a spline in a
No. of rotational bonds given descriptor may only occur at a value of the
Solvent acc. surface area descriptor present in the training set. For example,

Electronic descriptors Thermodynamic descriptors the knot of a spline in molar volume may only occur
LUMO A Log P (atom-based) at the calculated molar volume of one of the
Superdelocalizability Log P

compounds in the training set. Each location of thePolarizability (atom-based) Molar refractivity
spline knot is treated as a separate descriptor forHOMO No. of H-bond acceptors

Dipole moment No. of H-bond donors breeding purposes (e.g., kV 2180l and kV 2210lm m

are separate, unique descriptors). The initial popula-
tion was 300 equations and breeding continued for

3.1. Model 1 5000 generations. The equations generated by the
GFA were restricted to a fixed length of three terms,

The initial modeling technique used was multi- with no leading constant.
variate linear regression. In contrast to more mathe- The goal of this work was to build a model that
matically intensive techniques (such as neural net- properly identified the optimum cyclodextrin to
works), a model built using multivariate linear resolve a given analyte. In this first model, the given
regression that accurately describes the experimental analyte is presented to an equation for each cyclo-
data more easily lends itself to physical interpreta- dextrin, and the equation with the response largest in
tion. The desire for physical interpretability is also magnitude represents the optimum cyclodextrin.
reflected in the selection of calculated descriptors, as Initially, the model was built by selecting from the
many other easily calculated alternatives may be output of the GFA the single equation that best fit

2chosen. The quantity of greatest interest was the (largest R ) the training set data for each cyclo-
identity of the optimum cyclodextrin to resolve a dextrin. Surprisingly, this model did not perform
given analyte. The optimum cyclodextrin is defined very well in determining the optimum cyclodextrin
as the cyclodextrin that maximizes the absolute value for resolving a given analyte. This may have
of the quantity (j 21). It was also desired to occurred because it was not possible to generate1 / 2

correctly predict or correlate the migration order of highly accurate correlations of the data for the
2the resolved analytes. individual cyclodextrins (R .0.9). For a correlation

The first model developed answered the relevant to be highly accurate, all of the non-zero terms
question indirectly by using multivariate linear re- (resolved analytes) would have be nearly correct both
gression to describe the selectivities obtained using in sign and magnitude. Comparison of the responses
each cyclodextrin. The model consisted of three of such equations to determine the optimum cyclo-
separate equations (one for each cyclodextrin), and dextrin would have a high potential for accurately
the optimum cyclodextrin was determined by com- reflecting the experimental reality. In this work, the
paring the magnitude of the response of each equa- quality of fit achieved by the multivariate linear
tion for each analyte. The quantity (j 21) was regression indicated errors occurring in some of the1 / 2

modeled rather than j , so the equations would non-zero points. The errors could be of differing1 / 2

not require a leading constant. Analytes 1–17 were severity: omitting the separation of a compound by a
used as the training set to develop each equation, and non-optimum cyclodextrin would likely be benign,
the analytes 18–22 were reserved as a test set. The significantly overestimating the magnitude of the
test set was chosen to be representative of the whole separation by a non-optimum cyclodextrin less so.
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Table 6
Equations comprising model 1 (multivariate linear regression)

Cyclodextrin Equation
24 23

b-CD 2.17310 k349.32TASAl17.0310 k214.8112HOMOl20.37k0.5122RASAl
2 2R : 0.696 R : 0.563C.V.

24HP-b-CD 21.37k1.5272nl23.35310 k195.82TASAl10.75k210.9332LUMOl
2 2R :0.870 R : 0.685C.V.

23Tri-OMe-b-CD 20.12kn21.998l12.1310 kTASA2274.7l20.04kA log P25.628l
2 2R : 0.748 R : 0.548C.V.

These types of errors were present in all of the was retained in the model. The data in the test set
equations generated by the GFA. were not used to judge the prospective models. The

However, the GFA generates a large number of equations composing the model are presented in
2 2equations for a given cyclodextrin [29], and for each Table 6, with the R value and the cross-validated R

cyclodextrin there were many equations of nearly value. The notation k l denotes a spline function.
equal quality of fit. It was thus possible to build The retained equations for the three cyclodextrins
many unique models combining high-scoring equa- are comprised of seven unique descriptors. The
tions for each cyclodextrin, and compare their per- values of these descriptors for each analyte are listed
formance on identifying the optimum cyclodextrins. in Table 7. Shadow-n is the ratio of the longest
This was done, and the combination that best corre- primary axis of the analyte to the smallest, and is a
lated the training set data for optimum cyclodextrin measure of the shape of the analyte [33]. The

Table 7
Descriptor values for the analytes in this study

Compound Shadow-n A Log P HOMO LUMO SASA TASA RASA
2 2(eV) (eV) (cm /mol) (cm /mol)

1 1.976 6.757 214.618 27.645 461.4 327.2 0.709
2 1.998 6.296 215.589 26.561 455.4 349.3 0.767
3 1.865 6.132 29.476 24.564 477.9 355.9 0.745
4 1.818 5.968 210.957 25.824 460.3 313.7 0.682
5 1.449 4.525 216.708 26.010 345.2 250.1 0.725
6 1.427 5.467 217.656 28.022 367.9 274.7 0.747

7 1.764 4.448 219.021 210.773 324.2 195.8 0.604
8 1.504 4.640 218.460 210.747 348.4 234.9 0.674
9 2.092 4.660 217.278 29.909 354.4 226.9 0.640

10 1.527 4.779 218.381 29.950 365.3 267.2 0.732
11 1.500 4.774 218.041 210.155 393.0 265.4 0.675

12 1.617 4.190 217.283 210.122 343.2 148.2 0.432
13 1.861 4.186 217.226 210.614 337.1 145.5 0.432
14 1.955 4.834 211.061 29.579 375.0 209.9 0.560
15 2.210 4.857 29.476 28.439 415.2 287.3 0.692
16 1.919 5.628 215.309 210.970 383.1 196.2 0.512
17 2.069 6.164 214.811 210.933 405.8 165.7 0.408

18 1.975 5.922 28.921 22.797 473.0 358.9 0.759
19 1.436 4.138 217.449 28.594 347.9 232.3 0.668
20 1.819 5.104 215.487 210.873 365.6 263.0 0.719
21 2.071 5.632 215.397 210.940 391.1 211.5 0.541
22 1.679 4.155 217.737 210.292 359.2 219.3 0.611
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hydrophobicity of an analyte is reflected in A log P, produce strong fits to the data in the training set
2the sum of the atomic contributions to the octanol– (R ,0.9), the composite model performs well in

water partition coefficient. The highest-occupied and correlating the optimum cyclodextrin for resolving a
lowest-unoccupied molecular orbital (HOMO, particular analyte. The only error in the training set
LUMO) are related to the hydrogen bond donating is the optimum separation of atrolactic acid (com-
and accepting capacity of the analyte, respectively. pound 8) having the incorrect migration order, albeit
SASA is the solvent-accessible surface area, a mea- with the proper cyclodextrin (HP-b-CD).
sure of the size of the analyte, while TASA [34] is There are two errors in the model predictions for
the total apolar surface area, the surface area of an the test set of compounds. Compound 19 (tropic
analyte due to atoms with a formal charge smaller in acid) is predicted to optimally separate with the
magnitude than 0.2. Larger values of TASA indicate proper cyclodextrin, but with the incorrect migration
either larger or more hydrophobic analytes. RASA order. The errors in migration order for compounds 8
[34], the relative apolar surface area, is the ratio of and 19 may be due to the similarity of these
TASA to SASA. compounds to compounds 5 and 6 (2-

The optimum cyclodextrins determined using this phenylpropionic and 2-phenylbutyric acids). Com-
model are displayed in Table 8. For a given analyte, pounds 5 and 6 separate strongly using HP-b-CD
if none of the equations produce a response greater and migrate (2) before (1), while compounds 8 and
in magnitude than 0.010, the analyte is assumed not 19 migrate (1) before (2).
be separable and the optimum cyclodextrin is The second erroneous result in the test set is
‘‘None’’. Although the individual equations do not compound 21 (2-(4-chlorophenoxy) propionic acid)

Table 8
aSelection of optimum cyclodextrin by models using multivariate linear regression

Compound Experimental Model 1, Model 2,
Training set Optimum Optimum Optimum

CD (j 21) (j 21) CD (j 21) CD (j 21)1 / 2 1 / 2

1 Tri-OMe 0.098 0.098 Tri-OMe 0.063 Tri-OMe 0.099
2 Tri-OMe 0.175 0.175 Tri-OMe 0.128 Tri-OMe 0.092
3 Tri-OMe 0.074 0.074 Tri-OMe 0.148 Tri-OMe 0.064
4 Tri-OMe 0.084 0.084 Tri-OMe 0.067 Tri-OMe 0.087
5 HP 20.083 0.083 HP 20.106 HP 0.078
6 HP 20.170 0.170 HP 20.137 HP 0.100
7 None – – None – None –
8 HP/b 0.018 0.018 HP 20.032 HP 0.023
9 Tri-OMe 20.006 0.006 Tri-OMe 20.011 Tri-OMe 0.014

10 None – – None – None –
11 HP 20.025 0.025 HP 20.037 HP 0.027
12 HP 20.008 0.008 HP 20.016 HP 0.014
13 HP 20.016 0.016 HP 20.017 HP 0.016
14 b 0.040 0.040 b 0.030 b 0.030
15 b 0.016 0.016 b 0.013 b 0.013
16 b 0.032 0.032 b 0.030 b 0.030
17 Tri-OMe 20.032 0.032 Tri-OMe 20.030 Tri-OMe 0.030

Test set
18 Tri-OMe 0.233 0.233 Tri-OMe 0.163 Tri-OMe 0.046
19 HP 0.098 0.098 HP 20.124 HP 0.091
20 b 0.026 0.026 b 0.014 b 0.014
21 Tri-OMe 0.031 0.031 b 0.026 b 0.026
22 None – – None – None –
a Erroneous results are italicized. If an analyte cannot be resolved, the optimum cyclodextrin is ‘‘None’’.
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being predicted to behave in the same manner as in both the training set and the test set. However, the
compound 16 (2-(3-chlorophenoxy)propionic acid). model still incorrectly predicts compound 21 to
The only difference between these two analytes is optimally resolve using b-CD.
the position of the –Cl substitution on the phenyl Despite the improved success of the second
ring. However, these two compounds are optimally model, it is not possible to extract meaningful
resolved using different cyclodextrins. This leads to physical information from the component equations.
the incorrect cyclodextrin being predicted for op- This may indicate the data is not amenable to linear
timum resolution of compound 21. regression allowing physical insight. There are at

least nine compounds that are unresolved using each
cyclodextrin, and as a result the selectivity data are3.2. Model 2
rather discontinuous. Mathematically, QSAR model-
ing is an attempt to perform a coordinate transforma-The first model was unable to predict the proper
tion that maps the activity (retention, selectivity) datamigration order for a pair of analytes, and this may
onto a line, a plane, or a hyperplane, depending onbe related to the descriptors used not being enantios-
the dimensionality of the equation, with the calcu-pecific. To test this hypothesis, a second model was
lated descriptors as the available coordinate choices.derived using linear regression, ignoring the migra-
The discontinuity of the selectivity data required thetion order. The selectivity was thus defined as:
use of spline functions to exclude the non-active
(unresolved) portions of the coordinate space.m 2nd migrating enantiomers deff

]]]]]]]]]j 5 (3) It should be noted that the discontinuity does notm 1st migrating enantiomers deff
automatically imply unsuitability for linear regres-

The GFA was used to obtain an equation for each sion, as an ideal case for discontinuous data is
cyclodextrin. The quantity (j 2 1) was modeled, to presented in Fig. 3. When a hierarchy of spline
avoid the need for a leading constant in the equa- functions can be established, it may be possible to
tions. The initial population was 300 equations, and assign real physical meaning to the generated QSER
breeding continued for 5000 generations. The equa- equation. In the case of Fig. 3A, the physical
tions were restricted to three terms, with spline situation could be interpreted as: if an analyte is
functions allowed. The same training and test sets sufficiently hydrophobic (A log P), and is the right
were used as were used for the first model. As was size to fit into the cyclodextrin cavity (SASA), and
the case for model 1, the best model was found by has the right degree of hydrogen-bonding (HOMO),
trying various combinations of high-scoring equa- then it may be resolved.
tions, rather than simply combining the single high- Instead, the typical case in this work is represented
est-scoring equation found by the GFA for each by Fig. 3B. For either model, in the regressed
cyclodextrin. equation for a given cyclodextrin each spline func-

The retained equations for model 2 are presented tion included only a few compounds. There was little
in Table 9, and the performance of model 2 is overlap between the included compounds of each
displayed in Table 8. As would be expected, this spline function, and it was this lack of overlap that
second model removed the errors in migration order made it difficult to assign physical meaning to any of

Table 9
Equations comprising model 2 (multivariate linear regression)

Cyclodextrin Equation
24 23

b-CD 2.17 3 10 k349.3 2 TASAl 1 7.0 3 10 k 2 14.811 2 HOMOl 2 0.37k0.512 2 RASAl
2 2R : 0.696 R : 0.563C.V.

24HPb-CD 1.07k1.527 2 nl 1 7.9 3 10 k165.7 2 TASAl 1 0.14k 2 10.773 2 LUMOl
2 2R : 0.934 R : 0.930C.V.

23 22Tri-OMe-b-CD 0.06kn 2 1.861l 1 1.35 3 10 kSASA 2 393.0l 2 3.21 3 10 kHOMO 1 11.061l
2 2R : 0.778 R : 0.740C.V.
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a given cyclodextrin, the enantioselectivity is not
necessarily related to the binding strength. Instead,
the selectivity is dependent on the difference in
binding strength between enantiomers, and it was not
possible to calculate meaningful enantiospecific de-
scriptors.

3.3. Model 3

Since it was not possible to assign strong physical
meaning to the models developed using simple linear
regression, a more sophisticated modeling approach
was chosen whereby better predictive ability was
expected, albeit at the expense of losing any ability
to directly interpret the model. The third model was
developed using a general regression neural network
(GRNN). A GRNN is a three-layer network, with
one hidden layer. The hidden layer contains a neuron
for each record in the training set, and the hidden-
layer activation function is a Gaussian. The form of
the activation function for neuron j is given below:

2Os v 2Vs di i ij
i
]]]]A 5 exp 2 (4)Fig. 3. (A) Ideal case when using spline functions. (B) Non-ideal j 1 2 22s ucase when using spline functions. Arrows indicate direction of

included points.
In Eq. (4), v is the value of descriptor i being inputi

to neuron j, and V is the value of descriptor i forij

the equations. It was not apparent whether the spline record j in the training set. Thus, the center of the
functions were representative of underlying physical Gaussian activation function for neuron j is located
phenomena, or were simply mathematically conveni- at the point in descriptor space corresponding to
ent. record j. As the value of any of the descriptors

A second possible difficulty is that while the deviates from that of record j, the response of the
descriptors used in this study are well suited to activation function (A ) decreases in magnitude. Thej

describe the binding strength between an analyte and standard deviation of the Gaussian (s ) is referred tou

as the universal smoothing factor. The larger this
number, the less sensitive is the response of each
neuron to deviations from the center-point.

The Gaussian activation functions of the GRNN
allowed formation of a highly discontinuous repre-
sentation of the descriptor space, and thus should be
appropriate to model the discontinuous selectivity
data. Each Gaussian is centered at a point in de-
scriptor space corresponding to a compound in the
training set, and possesses a local neighborhood of
influence. The GRNN takes a new compound and
generates a response if the new compound lies in oneFig. 4. Representation of Gaussian Functions. Gray areas sur-
of the local neighborhoods. This is representedrounding points in training set indicate the domain of each

Gaussian. pictorially in Fig. 4. To lie in the neighborhood of
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influence of one the compounds in the training set, (.2:1), analytes 3, 12, and 15 were moved from the
the new compound must have descriptor values very training set to the test set. The training set was then
similar to those of the training compound. The comprised of fourteen analytes, and the test set of
GRNN may thus be thought of as performing pattern eight analytes. The descriptors used in each network,
matching on the test set data. and their associated smoothing parameters, are dis-

The model was built by training a network on the played in Table 10. As evidenced by the values of
experimental results for each cyclodextrin. The op- the individual smoothing parameters, in each case all
timum cyclodextrin for resolving a particular analyte three descriptors made a significant contribution to
was determined by comparing the responses of the the network. The overall performance of this model
three networks. The quantity (j 2 1) was in selecting the optimum cyclodextrin for separation1 / 2

modeled, with j defined by Eq. (1). The model is presented in Table 11.1 / 2

was thus expected to predict optimum cyclodextrin, The identity of the optimum cyclodextrin and the
magnitude of separation, and migration order. The magnitude of the optimum separations for com-
model was structured in this fashion for comparison pounds in the training set are correlated almost
with model 1, where the same quantity was modeled exactly, as with this type of network, deviations in
using multivariate linear regression. the fit of the training data occur only when two of

A genetic algorithm (GA) directed descriptor the Gaussians have overlapping regions of influence.
selection for the networks. Starting with a number of The model correctly predicts the optimum cyclo-
possible descriptors, the GA generates a population dextrin and migration order for seven of the eight
of sets of individual smoothing factors (s in Eq. analytes in the test set. However, as was the case fori

(4)), one for each descriptor. A network is developed model 1, this model predicts compound 21 to behave
for each set of individual smoothing factors by in the same way as compound 16, resulting in an
optimizing the value of the universal smoothing incorrect optimum cyclodextrin.
factor to best fit the test set data. The sets of
individual smoothing factors that produce the best 3.4. Model 4
fits to the test set data have the greatest chance of
having their elements propagated into future genera- The final model built treated the data as a categori-
tions. This is equivalent to using the GFA to direct zation problem, directly answering the relevant ques-
multivariate linear regression, with the algorithm tion. This model ignored the migration order and the
selecting individual smoothing factors instead of magnitude of the separation, but allowed the op-
descriptor identities. Network training is stopped timum cyclodextrin to be determined with a single
when 20 successive generations have not reduced the neural network.
overall mean-squared error fit to the test set data by
more than 1%. This requirement prevented over- Table 10
training of the network. Larger individual smoothing Included descriptors and smoothing factors for model 3 (GRNNs)
parameters yield a narrower Gaussian, and indicate Cyclodextrin Smoothing factor
the activation function is more sensitive to deviations

b-CD Universal 0.134in a given descriptor. Very small (|0) smoothing
HOMO 2.165

parameters indicate descriptors that have little effect TASA 2.200
on network performance. The number of possible Shadow-n 1.976
descriptors was reduced by successively eliminating HP-b-CD Universal 0.068
those with very small individual smoothing parame- LUMO 1.365
ters, until the best set of three descriptors was TASA 2.765

Shadow-n 2.529obtained. The possible descriptors were restricted to
those presented in Table 7. Tri-OMe-b-CD Universal 0.057

LUMO 1.294Each GRNN had three adjustable parameters (s )i
TASA 2.247varied to fit the data in the test set. To maintain a
Shadow-n 2.612proper ratio of data points to adjustable parameters
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Table 11
aSelection of optimum cyclodextrin by models using neural networks

Compound Experimental GRNN PNN
Training set

CD (j 2 1) CD (j 2 1) CD Confidence1 / - 1 / -

1 Tri-OMe 0.098 Tri-OMe 0.098 Tri-OMe 0.999
2 Tri-OMe 0.175 Tri-OMe 0.175 Tri-OMe 1.000
4 Tri-OMe 0.084 Tri-OMe 0.084 Tri-OMe 0.998
5 HP 20.083 HP 20.083 HP 0.993
6 HP 20.170 HP 20.170 HP 0.845
7 None – None – None 1.000
8 HP/b 0.018 b 0.018 HP 0.343
9 Tri-OMe 20.006 Tri-OMe 20.006 Tri-OMe 1.000

10 None – None – None 0.503
11 HP 20.025 HP 20.016 HP 0.410
13 HP 20.016 HP 20.016 HP 0.999
14 b 0.038 b 0.040 b 0.999
16 b 0.031 b 0.032 b 0.994
17 Tri-OMe 20.033 Tri-OMe 20.032 Tri-OMe 0.985

Conf. 86.2
Test set

3 Tri-OMe 0.074 Tri-OMe 0.084 Tri-OMe 0.999
12 HP 20.008 HP 20.016 HP 0.387
15 b 0.016 b 0.017 b 1.000
18 Tri-OMe 0.233 Tri-OMe 0.175 Tri-OMe 0.940
19 HP 0.089 HP 0.018 HP 0.844
20 b 0.026 b 0.030 b 0.981
21 Tri-OMe 0.030 b 0.018 Tri-OMe 0.910
22 None – None – None 0.858

Conf. 86.5
a Erroneous results are italicized. If an analyte cannot be resolved, the optimum cyclodextrin is ‘‘None’’.

The single network used was a probabilistic neural representing the optimum cyclodextrin to perform
network (PNN). The PNN was similar to the GRNN, the separation and zeroes for the other elements.
as it had three layers with one node in the hidden Atrolactic acid (analyte 11) was assigned a one for
layer for each record in the training set, and the both b-CD and HP-b-CD, as the selectivity using
activation function in the hidden layer was a Gaus- these cyclodextrins was identical within experimental
sian (Eq. (4)). There were four output nodes: one for error. The descriptors to include in the network were
each cyclodextrin and ‘‘None’’ in case an analyte chosen using the GA, in the same fashion as for
could not be resolved. Each output neuron (or model 3. Network training is again stopped when 20
cyclodextrin) is connected only to those neurons in successive generations have not reduced the overall
the hidden layer that represent cases in the training mean-squared error fit to the test set data by more
set that are optimally resolved using the particular than 1%, to prevent over-training of the network.
cyclodextrin. For example, the output neuron for The descriptors retained in model 4 were HOMO,
b-CD is connected to the hidden neurons corre- TASA, and Shadow-n. The individual smoothing
sponding to analytes 8, 14, and 16. When a test factors were 1.682, 0.482, and 1.282, respectively.
analyte is presented to the network, the output The universal smoothing factor was 0.088. The
neuron that fires the strongest (largest magnitude) is performance of model 4 is presented in Table 11.
designated as optimum. The confidence of the model prediction is defined as:

The training and test sets are the same as those
Max actual node valuess dused for model 3. The data used to train the network ]]]]]]]Confidence 5 (5)Oactual node valuesis a four-element array for each analyte, with a one
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Maximum confidence in a result is obtained when m S enantiomers deff
]]]]]only the hidden neurons connected to a single output j 5 (6)S / R m R enantiomers deffneuron fire. Confidences less than 1 for the training

set occur when hidden neurons corresponding to The models thus developed perform identically to the
different optimum cyclodextrins have overlapping models developed with the selectivity defined by Eq.
regions of influence. (1). The same errors are committed on the same

Model 4 performs well using a single network, compounds. Models 2 and 4 do not depend on the
correctly predicting the optimum cyclodextrin for migration order.
each analyte in the test set. However, this model
does not give migration order or an estimate of the
separation magnitude, and thus may be less useful 3.6. Comparison of models
than the other models, depending on the needs of the
user. The models developed to simultaneously predict

the optimum cyclodextrin for resolution, migration
3.5. Use of R /S vs.6 designation order, and magnitude of separation performed fairly

well. With either multivariate regression or neural
The data can also be modeled using the R /S networks, in only one case was the incorrect op-

designation to identify the order of migration. The timum cyclodextrin identified. However, this error
direction of optical rotation was chosen because it and errors that occurred in prediction of the migra-
was known absolutely for the first eluting enantiomer tion order may indicate that neither mathematical
of each analyte. For five of the analytes, the R /S approach was capable of recognizing the more subtle
designation was not known absolutely, and would distinctions between the compounds present in the
have had to be inferred from the relationship be- data set.
tween R /S and direction of optical rotation of similar If the only quantity of interest is the identity of the
analytes in the data set. optimum cyclodextrin for resolution, the modeling

Table 12 shows the migration order for our data approach using a PNN worked excellently. Model 4,
set using the R /S designation, including the best developed with a PNN, was able to accurately
guesses at the unknown designations. Models 1 and predict the optimum cyclodextrin for resolving a test
3 have been re-derived with the selectivity defined set of analytes. Model 2, developed using multi-
as: variate linear regression, retained an error in predict-

Table 12
First eluting enantiomerof analytes: (R /S) designation

Compound b-CD HP- Tri-OMe- Compound b-CD HP- Tri-OMe-
-b-CD -b-CD -b-CD -b-CD

1 – – R 13* – R –
2 – – R 14 S – –
3 – – R 15* S – –
4 – – R 16* S S S

5 – S S 17* – R R
6 – S S
7 – – –
8 R R – 18 – – R

9 – – S 19 – S S
10 – – – 20 S S –
11 – R – 21 S S S

12* – R – 22 – – –
* Relationship between R /S and optical rotation inferred from similar compounds.
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ing the optimum cyclodextrin to resolve one of the References
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